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© Symmetric and Nonsymmetric Buckling of Finitely Deformed

Eccentrically Stiffened Shells of Revolution*

by

David Bushnell**

Lockheed Missiles and Space Company, Palo Alto, California

ABSTRACT

The symmetric and nonsymmetric buckling of axisymmetrically loaded shells

of revolution is studied. The analysis is valid for monocoque and eccentrically

stiffened shells. Finite prebuckling rotations and other nonlinear prebuckling

effects are accounted for in the stability analysis, which is formulated as a

linear eigenvalue problem and treated by the method of finite differences.

Donnell-type equations are used in the study of nonsymmetric bifurcation buckling

and appropriately linearized Reissner equations are used in the study of symmetric

bifurcation buckling. Nonlinear Reissner equations are used to obtain the pre-

buckled state of the shell and to cover the case of large deflection axis27mT_etric

collapse. The boundary conditions are expressed in a general form in order to

permit treatment of composite shells or ring supports whose elastic properties

are accounted for through stiffness coefficients. The analysis is progrc_mmed on

a digital computer and numerical results are presented for externally pressurized

monocoque torus shells, eccentrically stiffened shallow spherical caps, and mono-

coque complete spherical shells with local imperfections in the form of flat

spots. Good agreement is found with previous independent investigations of the

torus and with experimental results on internally stiffened spherical caps.

Some significant new conclusions reached are: i) Finite prebuckling rotations

and other nonlinear prebuckling effects do not affect the theoretical buckling

loads of torus shells; 2) the eccentricity effect must be included in order to



© predict accurately the buckling load of meridionally stiffened spherical

caps; and 3) externally pressurized, imperfectly manufactured spherical

shells will fail through large-deflection axisymmetric collapse rather than

through bifurcation buckling.

The computer time associated with this research was" sponsored in part by

the Lv_C Independent Development Program and in park by the NASA under
contract NAS 1-6073.

** Research Specialis%, AIAA Member.
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Nomenclature

merldional radius of curvature of torus, sphere

coefficients of constitutive equations, see Ref. 1

distance from axis of symmetry to meridional center of

curvature of torus

arc length between circumferential ribs

see equations (5a)

boundary condition coefficients at A, see eq. 9

boundary condition coefficients at B, see eq. 9

shear modulus of shell wall C33 = E/_(1 + u)]

Young' s modulus

shear modulus of ribs

horizontal force/length

torsional stiffness constant for ribs

curvature of deformed shell

Gaussian curvature

moment resultant

(Ml2 + M211/2

number of meridional stiffeners

stress resultant

number of circumferential waves in buckling pattern

normal pressure

buckling pressure for complete sphere of thickness t or ts

radius of curvature

radius of curvature of imperfection in spherical shell

horizontal radius from axis of symmetry to middle surface
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U
V

V

V
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C

X

V

P

Per

9

arc length

shell wall thickness

displacement tangential to undeformed meridian

horizontal displacement

vertical displacement

circumferential displacement

vertical force/length

normal displacement

angle from eenterline to edge of spherical dome; also

edge angle of imperfection

me_idlonal rotation

[12(1 - U2)]I/4(R/t)I/2_

knom(R/Rimp) I/2

middle surface strain

change in radius of curvature

Poisson's ratio

stress function for n = 0 case. _ = rH

Airy-type stress function

loading parameter, e.g. P/Pcr

critical loading parameter

circumferential coordinate

Subscripts and superscripts

( )' differentiation with respect to arc length s

)" differentiation with respect to circumferential coordinate,
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( )l

( )2

( )12

shell wall, not including stiffeners

pertains to meridional direction

pertains to circumferential direction

shear resultant, twisting moment, twisting change in

curvature

()o prebuckling quantity
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Introduction

While much analytical and experimental work has been done on the stability

of monocoque cylindrical and spherical shells and on eccentrically stiffened

cylindrical shells, there exist fewer analytical or experimental studies of

more general shells of revolution with more general wall construction. In

addition practically all of the work done on shell stability presupposes a

prebuckled state of the shell based on linear theory.

The stability problem as formulated here has two parts. In the first

part the two equations governing the prebuckled state of an arbitrary, axi-

symmetrically loaded shell of revolution are solved. These are nonlinear,

nonhomogeneous, second-order, ordinary differential equations. Their solution

_and numerical examples are presented in Ref. 1. The second part involves the

solution of a linear eigenvalue problem. Displacements and stresses calculated

in the first part appear as known variable coefficients in the two homogeneous,

linear, partial differential equations governing stability. The lowest eigen-

value of these equations is the buckling load.

Stability Equations:

The general equations governing the stability of shells of revolution

when n _ O can be simplified by making the so-called "shallow" shell assumptions

These assumptions are discussed in Ref. 2. They are:

1. the usual assumptions of Love's first approximation,

2. the assumption that the flexural and extensional Strains are of

comparable magnitude, or

t/R < < t_/¢ << Min.(R/t, I/t_)

where _ is the maximum absolute change of curvature and c is the

maximum absolute middle surface strain.

6



3. the assumption that

KL 2 << 1

where K is the Gaussian curvature and L is the wavelength of

deformation.

The first assumption is basic to almost every engineering shell analysis.

The second assumption has two important consequences: _) Two of the three

compatibility equations for the deformed middle surface may be approximated

by the similar equations for an inextensional deformation of the middle

surface, and (2) a moment resultant divided by a radius of curvature of the

middle surface, or multiplied by a change in curvature can be neglected

compared to the stress resultants. The third assumption permits the

approximate solution of the in-plane equilibrium equations by an Airy-type

stress function.

0

The governing equilibrium equations are:

(r_I),_ _,N2 + Ni2 = 0

N_ + (rNl2)' + r'Nl2 = 0

- (r__)" - M_/r+ (r'M2)' +._" + r_/r

= r(_lW{+ _2½ - N10_-- _20_2)

and the compatibility equations are

(r_2)' - r'5_ + '/2 : 0

__ + (r_.12), + r'j_1_.2 = 0

-(r,p" - ._Ir + (r'_)' + _i_+ r'iJr

=-r(_2_ + ___ + _o_')

7
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© Equations (1) and (2) are almost analogous, with

(3)

Equations (la) and(lb) and equations (2a) and (2b) are satisfied approximately

by Airy-type stress and curvature functions:

N1 = _r 2 + _'r'/r

N2 = _"

_12 : - (_'/r)'
(4)

: W vv

_'2 = w"/r2 '+w'r'/r

_2 = " (w'/r)'

According to Koiter (Ref. 2) w can be considered a "curvature function",

analogous to a stress function. There is no need to define it as the normal

displacement. However, in the present investigation, where the displacements

from the prebuckled equilibrium state _re considered to be infinitesimal, w

does represent the actual normal displacement within the accuracy of the

"shallow" shell equations.

The final governing equations are written in terms of _ and w by

inserting equations (4) into (ic) and (2c), with the constitutive equations:

0
8
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h,

M21I

"All o o

A21 A22 0 A23 A24 0

0 0 B33 0 0 0

A31 A32 0 A33 A34 0

A4Z A42 0 A43 A44 0

0 0 0 0 0 B66.

Nl"

N 2

N12

_2

_2

(_)

where the Aij are given for eccentrically stiffened shells of revolution

in Ref. 1 and

B33 = l/(033t)

G1 J1 m G2 J2

..B66 = 033 (t3/3 + 2rrr C33 + _20_3 )

(5a)

The Aij and Bkk are similar to the constants originally determined by

Barueh (Ref. 3), who assumed that the stiffeners are "smeared out"

and that they follow lines of curvature of the shell. The cross-

section of the meridional stiffeners is constant, so that their contribution

to the stiffness of a shell of revolution varies inversely as the radius

r from the axis of revolution. The eccentricity effect is retained by

assuming that the strain varies linearly through the actual thickness of

the stiffeners and not through a smeared out or "effective" thickness.

The sign convention is shown in Fig. i. A positive change in curvature

is such as to reduce the initial curvature. This same convention was used

in Ref. i.

©
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_ Two ordinary differential equations of fourth order result when

= _n (s ) sln ne

w = w (s) sin n@
n

(6)

are inserted into the partial differential equations of compatibility and

equilibrium. The final equations have the form:

CB(M,I)@V+ CB(M,2)_"'+ CB(M,3)_"+ CB(M,4)_'+ CB(M,5)_
(7)

+ C_(M,6)wIv + CB(M,7)_'"+ CB(M,8)w"+ C_(M,9)w'+ CB(M,10)w= 0
q

where

CB(M,I) = - r A22

CB(M,2) = r'(Al2 - A2_1 - 2_A22) - 2rA_2

(8)
CB(M, 3) = r'2All/r + n2(AI2 + A21 + B33)/r + rK(A22 - AI2 + 2A21 )

T!2r'Ah - rA22- 2r'A_2+ r'_2 + fl

c_(M,4) = - All(r'3/r2 + 2r'K) + A21(r'K- 2n2r'/r 2)

- B33n2r'/r2 + Ael(2rK' + n2/r, - r'2/r) - r'A21"

+ _l r'2/r + n%_3/r+ f2

O

CB(M,5) n2{All(2-r'2/r2 + K - n2/r 2) + A21(K + 2r'2/r 2)

+ B33(K + r'2/r2).}/r + n2A21/r - r'A/in2/r2

- r'B33 n2/r2 + f3

lO
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The coefficients written as equations (8) are the coefficients of the _-terms

of the compatibility equation. The coefficients of the w-terms and of the

equilibrium equation can be obtained by analogy. Table 1 gives the changes

which must be made in the Aij and definitions of fl ' f2 ' and f3 " In

the derivation by analogy of the remaining undefined coefficients, the values

given in the first column of Table 1 are replaced by the corresponding values

of the other three columns.

The designation CB(M,N) for the numerical coefficients is used in the

th
,computer program to be explained below. The row number M denotes the m

equation in the set of 2K + lO finite-difference equations generated by dividing

the meridian into K intervals, satisfying compatibility and equilibrium at

the K + 1 points in the domain and satisfying 4 boundary or symmetry conditions

at each end of the meridian. In the computer program odd equations are

compatibility equations and even equations are equilibrium equations.

ii
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.Boundar_ Conditions

The boundary conditions for the stability problem are treated in a

manner analogous to that explained in Ref. 1. General boundary conditions

can be written in the form:

_l _u2 B_3 B_4 BA_5 BAt6 B_7 _ 8_

BA21 BA22 BA23 BA24 BA25 BA26 BA27 BA28

BA31 BA32 BA33 BA34 BA35 BA36 BA37 BA38

BA41 BA42 BA43 BA44 BA45 BA46 BA47 BA48

BEll BBI2 BB13 BB].4 BBI5 BBI6 BBI7 BBI8

BB21 BB22 BB23 BB24 BB25 BB26 BB27 BB28
BB31 BB32 BB33 BB54 BB35 BB36 BB37 BB38

BB41 BB_2 BB43 BB44 BB45 BB46 BB47 BB4_

The first 4 of equations (9) are the boundary conditions at

r1u H

v

rN
12

u
v

rV

0 (9)

A (See Fig. li).

The last 4 are the boundary conditions at B The boundary conditions are

given in this general form in order to permit treatment of composite shells

in which the elastic properties of adjacent structures are accounted for

through their stiffness coefficients. In addition the formulation of the

stability problem must be compatible with the formulation of the prebuckling

nonlinear analysis. Hence the first four quantities in the column vector of

equations(9) are the same as those appearing in equations (14) of Ref. i.

The boundary condition equations have the form shown in equation (7).

Tables 2 and 3 give the coefficients B(I,J) for the forces and displacements

normal and tangential to the prebuckled middle surface. These must be

resolved in the horizontal and vertical directions for use as shown in

equations (9). With regard to the A_j and Bkk , the changes shown in

Table I must be made in order to derive by analogy the coefficients of the

w-terms (B(I,J), J = 7 through lO). The functions f4 through flO are

tabulated in Table 3.

12
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The expressions for u

the normal displacement w

s-derlvatlves of u

and v in terms of the stress Junction _ and

are obtained by firsteliminating v and the

from the strain-displacement relations :

'z : u'+ w/Rl + _j'

e2 = ur'/r + v'/r + w/Re

'12: u'/r+ r(v/r)'+ _oW'Ir

(lo)

The following equation is found:

u"/r + ,4rK + r'2/r) :

"The circumferential displacement v

equation (ii).

_2"- r '_2+ r'% + _,_ _ r,w/_2 _j"/r

can be found from equation (10b) and

(zz)

Solution of the Equations

The method of finite differences is used to solve the linear differential

equations of the form (7). The set of finite difference equations is arranged

as described in Ref. 1 (See Fig. 2 of that reference). Hence the matrix of

coefficients is strongly banded about the main diagonal. Efficient machine

language subroutines have been written at the Lockheed Missiles and Space

Company (Ref. 4) to solve large equation systems whose coefficient matrices

are banded.

The derivatives of _ and w are simulated by 5-point central difference

formulas and the coefficients of 2AM + 8 algebraic equations are stored in a

condensed matrix A • The 2M+ 8 equations correspond to the compatibility

equation and the equilibrium equationat M points on the meridian, and 8

boundary conditions, four at each end of the shell.

13



© Stabilit_ E_uations for n = 0

The stability equations for n = 0 can be derived by carefully specializing

the equations valid for n _ O, or by appropriately modifying the nonlinear

prebuckllng equations of Ref. 1. When one attempts to solve equations of the

form (7) by the finite difference method, the case n = O gives rise to numerical

difficulties associated with ill-condltloned coefficient matrices. Hence, the

n = 0 case is approached by modifying the Reissner-type equations (9), (ll),

The quantities _ , _ , and D_ are each split into two_nd (15)of _ef. i°

parts :

The prebuckling parts

: So + _i D_ : D@o + D_i (12)

_o ' _o ' and D_o are finite; the increments _i '

_i ' and D_i are infinitesimal. Since

D_ : _ - rV(r'R2/r) (13)

and rV , being statically determinate, does not change during buckling, it

is clear that D_i = _i " The following stability equations result when the

right-hand sides of equations (12) are inserted into equations (9), (ii), and

(15) of Ref. i, and only linear terms in the increments _i and 8i are retained:

Compatibility: M = 21 + i

C(M,I)#['+ C(M, 2)#_ + [C(M, 3) + CNONL(M, 3)_ o + CNONL(M'7)B o] 9i

+ C(M,4)8_ + [CNONL(M,I) + CNONL(M, 2)_ o + CNONL(M, 3)D_ o + CNONL(M, 4)p] _

+ [CNONL(M, 2)_ ° + CNONL(M, 5) + 2CNONL(M, 6)_ o + CNONL(M'7)D_ o + CNONL(M, 8) rV

+ C_0NL(M,9)p]Bi : 0 (l_)

14



_: M =2I+2

+ CNONL(M, 8) 8o]9 i + C(M'4)Si + [CNONL(M, 3) + CNONL(M'4)D#o

+ CNONL(M, 5)P]_'I + [CNONL(M, 6) + 2CNONL(M'7)8o + CNONL(M'8)D_°

+ CNONL(M,9) rV + CNONL(M, IO)p] _i = 0 (15)

The boundary condition equations,

of the meridian, have the form:

of which there are two for each endpoint

c(M,2)¢1 + [c(_,5)+ CNONL(M'5)_o]¢i+ C(M,5)_ (16)

+ [CNONL(M,I)+ 2CNONL(M'2)_o+ CNONL(M'3)D*°+ CNONL(M,4)P]_i =
0

Formulas for C(M,N) and CNONL(M,N) are given as equations (lO), (12), and (16)

in Ref, i. As in Ref. l, the stability equations for n = 0 are solved by

simulating the derivatives by 3-poi nt finite-difference fo_uulas at each of

the M stations on the meridian. The arrangement of these equations in a

condensed matrix is as described in Ref. 1 and above.

©

Findin5 the Lowest Ei_envalue

The stability equations in finite difference form are a set of linear,

homogeneous, algebraic equations. There exist nontrivial solutions of this

set for discrete values of a parameter, in this case'a load or pressure parameter.

The lowest eigenvalueis the buckling load or pressure. Its value can be

obtained by various methods. The determinant of the coefficient matrix can

be plotted versus the load in order to find the point where its sign first

changes. When the eigenvalue problem has the form

15
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(A + = 0 (17)

an iteration scheme (Ref. 5 ) can be employed to calculate both the lowest

eigenvalue and eigeqvector.

In this general analysis in which nonlinear prebuckling effects are

included, the eigenvalue problem does not have the simple form (17). The

eigcnvalue parameter k (load or pressure) does not appear linearly, but

manifests itself through the prebuckling meridional rotation _o ' stress

resultants Nlo and N20 , and changes in curvature CURV1 and CURV2, which

.appear in the coefficients of the stability equations. These quantities are

related in a nonlinear way to the loading. However, there are many practical

shell structures which buckle when _o is so small that linear theory is

still accurate. In such cases the stability equations can be approximated

by equations of the form (17) and the power method (Her. 5) can be used to

find the lowest eigenvalue and corresponding eigenvector with a fair degree

of accuracy.

When the nonlinear terms are important, such as in the case of bifurcation

buckling of externally pressurized shallow spherical caps, the power method

can be used to advantage in the following way: The determinant D of

coefficients of the stability equations is evaluated for increasing values

of the loading parameter p , where rather large step sizes in p are taken.

Figure 2 shows a plot of D versus p . There is a p-interval, _ to P2 '

in which D first changes sign. The load for which D = 0 is approximated

by linear interpolation from the endpoints _ and P2 of the interval.

The error in the buckling load is now Dp : P3 -Pcr If

_o ' NIO and N20 can be expanded in Taylor series about

16

Dp/pc r << i ,

P3 :
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8o = (_o)3 + z(a_o/ap)3 N1o = (_io)3+ z(_10/dP)3

_eO : (NeO)3÷ z(_eo/dP)3

(18)

where z = p - P3 " Similar expansions can be made for the prebuckling

changes in curvature CI/RVI and CURV2 . The derivatives d_o/d p , dNlo/d p ,

etc. are calculated from interpolation formulas such as

IdNd__O0_) LI(NIo)2 <_i _2_ L2(NIo)I3 : L2*STEP + + (NIo)3 - _I.STE P (19)

"Subscripts I, 2, and 3 refer to values corresponding to Pl ' P2 ' an_ P3

The quantities L1 , L 2 , and STEP are shown in Fig. . A value for z is

calculated from the linear system

(A + zB)x : o (co)

through use of the power method. Since Dp/pc r << i , convergence is indeed

rapid. The new value of p is p = P3 + z If Iz/p3 1 is less than some

preassigned number ERR , calculations for the eigenvalue terminate. If not,

new derivatives (d_o/dP) 4 , etc. are calculate_and a new correction factor is

calculated from equation _0> Iterations proceed until Iz/pl < ERR

©

The Computer Program

Figure 3 is a flow chart of the computer program used for finding the

lowest eigenvalue (buckling load). The boundary condition coefficients

(eq. 9), indices for shell geometry and type of loading, and the wave number

n are read in from data cards. The buckling load p is first found as a

17
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function of the wave number n assuming no prebuckling rotations, Pre-

buckling membrane stresses are calculated from membrane theory and the power

method is used to find the lowest elgenvalue. The wave number n is varied

untll a minimum p(n) is found.

A more accurate value of p is then calculated for the critical wave

number by including nonlinear prebuckling effects and plotting the stability

determinant as described in the text associated with equations (18)-(20).

There are cases in which the wave number corresponding to a minimum

value of Pcr calculated from linear theory is not the same as that for

a minimum value of Per calculated from nonlinear theory. For these cases

an option is provided in the program through which one can bypass the linear

branch and calculate Pcr(n) from the nonlinear theory only.

The linear branch is provided to save computer time. For a great many

shell geometries, use of the membrane prebuckling analysis' yields good

approximations to Pcr and the corresponding wave number n . Less trial

and error is then needed in the more tlme-consuming nonlinear prebuckling

analysis.

Numerical Results

The computer program based on the stability theory described above has

been used to calculate prebuckling deformations and buckling loads and modes

for several types of shells. The program was checked by performing calcula-

tlons _r externally pressurized shallow monocoque spherical caps. The

results agreed with the findings of Huang (Ref. 6). The program was further

evaluated by calculating buckling loads for monocoque cylinders and conical

frustums under hydrostatic compression. Results agreed with the loads

o calculated in Ref. 7 and Ref. 8, respectively. Calculations were also made

18



© for an axially compressed cylindrical shell reinforced by external stringers

of rectangular cross-sectlon. The buckling load agreed with that found in

Ref. 9.

Buckling of a Torus under Hydrostatic Compression

In all of the numerical examples listed above, the "shallow" shell

theory is clearly accurate, since the shell is either geometrically shallow,

or it buckles into a fairly large number of waves. In order to further

evaluate the accuracy of the theory, the more marginal case of the monocoque

torus was studied. Sobel (Ref. 10) has recently obtained buckling loads for

. _ wide range of torus geometries. His calculations for n _ 0 are based on

more accurate shell stability equations, wherein the second and third assump-

tions (see page l) of this analysis are not made. However, Sobel does not

include prebuckling rotations and nonlinear prebuckling effects in his work.

Numerical results from the asymptotic analysis of Jordan (Ref. ll) for

n = 0 as well as Sobel's results for n = 0 are directly comparable to the

results of this analysis, since the shallow shell assumptions are not made

in this case. Both Jordan's analysis and the analysis of this paper when

n = 0 are based on Reissner's equations (Ref. 12).

Table 4 lists the buckling loads from the three independent investiga-

tions for a/t = 100 and various values of b/a and n The loads in the

column labeled "this analysis" were calculated both from the linear theory

and from the more exact theory in which prebuckling rotations and nonlinear

prebuckling effects are included in the stability equations. Both theories

yielded the same buckling loads for all values of b/a and n

When b/a < 7 and n # 1 the three analyses agree. The large discrepancy

in the buckling loads for n = 1 could be due to the shallow shell approxima-

tion, although this is not certain. The agreement deteriorates for increasing

19
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b/a. When b/a is large the major terms in the governing equations tend to

cancel, leaving small terms to determine the behavior of the torus. These

small terms differ in the shallow shell and non-shallow shell analyses.

When'n = 0 and b/a is large, the lack of agreement between the present

results and Sobel's results is probably due to the assumption in this paper

that the vertical force/length V is statically determinate and hence does

not change during buckling. However, V is not statically determinate for

the torus, sincetl_ meridian is doubly-connected. When b/a is small the

deformations are concentrated near the crown, and V at the equator can

"be very accurately calculated from membrane theory. For large b/a this

is no longer true, since the buckling deformations are almost inextensional.

Eccentric_11y Stiffened Shallow Spherical Dome

It is possible with the theory described above to calculate buckling

loads for eccentrically stiffened shallow spherical domes of the same

geometry as some of those tested by Meyer and Bellifante (Ref. 13). It

should be emphasized that this analysis applies _ to the general instability

mode of failure. In Ref. 13 the domes are referred to as M-2, M-3, and M-4.

They are stiffened meridionally by internal ribs of rectangular cross-section.

The material of the test domes was Bakelite with a modulus E = 465,000 psi

and a Poisson's ratio v =0.37. The geometry of the domes is given in Table 5,

and the buckling loads in Table 6. All of the shells were clamped at the

edge.

Photographs in Eel. 13 of buckled shell models M-2, M-3, and M-4 indicate

that the mode of failure was general instability. Buckling patterns with 8

circumferential waves formed in all three cases.

x
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The results summarized in Table 6 (pl) indicate that theor6tlcally model

M-2 should buckle into 9 waves, M-3 into 8 waves, and M-4 into ll waves.

However, the buckling load _ is not strongly dependent on the wave

number, and it is likely that during the large postbuckling displacements

the wave number changes in order to maintain some kind of "least energy"

symmetry with respect to the stringers. No such preferred circumferential

orientation is possible in this theory, since the stiffeners are "smeared

out."

Two interesting phenomena are evident from Table 6. Of great importance

to the designer is the fact that external stiffening raises the buckling

load (p2) for the same structural weight. A similar phenomenon has been

noted by several investigators in the theory of axially compressed, eccen-

trically stiffened cylindrical shells.

Another interesting point is that the theory based on the membrane pre-

buckling analysis with 8o = 0 yields lower buckling loads (p3) for M-3 and M-4

than does the more exact analysis including prebuckling meridlonal rotations and

nonlinear prebuckling effects. This behavior is the reverse of that for

shallow monocoque domes. In Ref. 6 Huang shows that the buckling load of a

shallow clamped cap, calculated by assuming uniform prebuckling displacement

and stress, is always greater than the buckling load of a complete sphere

(see Fig. 6, Ref. 6). The load calculated from the "exact" analysis is

always less than the buckling load of a complete sphere (see Fig. 7, Ref. 6).

Figure 4 shows the prebuckling deflection at Pcr and the buckling

mode shape for n = ll, model M-4. The shapes are similar to those for an

externally pressurized monocoque spherical cap, clamped at the edge.
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Imperfect S_herical Shells

In Ref. I the external pressures at which imperfect spherical shells

collapse axisymmetrically are calculated. The local geometry of the shells

is as shown in Fig. 5. No attempt is made in Ref. 1 to calculate the

loads, if such exist, at which the deformed symmetric prebuckled equilibrium

state becomes unstable and bifurcation to a nonsymmetric equilibrium state

OCCURS.

In the present analysis, it has been found that for 0 < Rimp/R N 1.4,

axlsymmetric collapse occurs before bifurcation buckling when k is less

than about 5.7, and bifurcation buckling occurs first when k is greater
"i

than about 5.7. The same rule of thumb applies to shallow spherical caps

clamped at their edges.

Figure 5 shows the prebuckling deflection and buckling mode shape for

an imperfect spherical shell with kno m = 7 , Rimp/R = 1.4 , and R/t = lO0.

The boundary conditions for the prebuckling equations are 8 = M 1 = 0 as

s becomes large. The boundary conditions for the stability equations are

: _ = v = uv = 0 as s becomes large. These conditions are applied

at a distance 3.3(Rt) I/2 from the edge of the imperfection. They assure

that the uniform membrane state is approached as s becomes large, and

hence they simulate the remainder of th@ spherical shell. From Fig. 5 it

is seen that practically all of the buckling deformation takes place in the

imperfect portion of the shell. Therefore, it is reasQnable to expect that

the bifurcation behavior of an imperfect spherical shell will resemble that

of a spherical cap with the same geometry as the imperfection and clamped

at _ •
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Figure 6 shows the Btability curves for three imperfect spherical

Bhells with Rimp/R = 1.05, 1.15, and 1.40. The dotted curve represents

the geometric parameter k for the imperfect portion. It is seen that

indeed the imperfect portion does behave almost as though it were a cap

clamped at its edge.

In actual practice, it is unlikely that imperfections with kno m > 6

will occur while a spherical shell is being manufactured or in service.

Tolerances on spherical shells are usually expressed in terms of deviations

from sphericity. As can be seen from Fig. 12 of Ref. l, the critical

o collapse loads for given deviations from sphericity occur when kno m < 5

for any value of Rimp/R •
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Table 1

Changes in Aij and Definitions of fk for the Coefficients

CB(M,N) of the Compatibility and Equilibrium Equations

Compatibility

_terms

CB(M,N), N = 1 to 5

replace

N

Al2

½2

B33

w-terms

CB(M,N),_ = 6 to l0

fl =0

f2 =0

f3 =0

by

N+5

Equilibrium

%o-terms

CB(M,N),N : i to 5

by

N

w-terms

_(M,N), _ : 6 to io

by

N+5

AI4

A24

A23

0

A41

A42

A31

A32

0

A44

A34

A33

B66

fl = r_

f2 = r'_ + 8orK

f3 = -n2k_/r

fl =-r_

f2 = - r'_

f3 = n2_/r

fl = rNl0

f2 = r'N20

f3 : -n_20/r
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Table 2

Coefficients for Tangential and Normal Forces and Displacements n # 0

B(I,2)

rN 1

rQ -rA32

t
rNl2

u -rA22

FACT*

W

v r tu/n

I!

r'(A42-A3_
_ !

rA32

FACT

B(I.5)

A32

(r'u - rA22)/n

r ' -n2/r

r'2A l/ _'A'4 r- 3z

+ A31(rK+n2/r)

+ f4

- n

A31r'/r

Allr'2/r + B33n2/r

2. 2 ,2,, l
+ A21(r _+n +r ;/r,

r t , }" A21 + f6 /FACT

(r'u r'A21)/n

-r 'n2(Akl+A31 )/r 2

+ n2A:_z/_+ f5

nr '/r

-A31n2/r2

-r' 2 ,'n (All+2A21+B33)/r

+ n2A_I/r

+ f7}/FACT

f8

(r'u + A2_in2/r)/n

+ f9

fl0

*FACT : rK + r'2/r - n2,/r
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Table 3

Definitions of fk for the Boundary Conditions

_-terms, B(I,J), J = 2 to 5 w-terms, _(I,J), J : 7 to lO

f4 : _Or'

f5 : - n2_o/r

f6 = 0

f7 = 0

f8 = o

f9 = 0

flO = 0

f4 = rNlo

f5 = - n2r'B66/r2

f6 = r_

f7 = - r'/R2 + n2Bo/r

f8 = 1.0

f9 : _/(_2 )

flO = 1.0
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Table 4

Torus Buckling Loads for a/t = lO0

b/a n (p/_) x IO6

This Analysis Sobel Jordan

1.2 3.73 3.54

2.0

4.0

7.0

30.0

i00.0

0

1

2

0

1

2

3

0

1

2

0

1

2

0

1

2

0

2

0

2

3.52
3.6o

5.o5 5.20

2.54 2.68

2.48 lO.99
2.83 2.81

3.26 3.40

1.99 2.15
1.98

2.22 2.21

1;61 1.73

i. 56 6.83

i .72 i .75

1.87 i .92

i.i0 i.24

i .07

1.13 1.23

0.444 0.547

o.4o6 0.529

•0.172 0.387

0.149 0.370

2.52

2. Ol

1.58

1.09

0.414

0.185

O
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Table 5

Geometry for Meridionally Stiffened Domes

Dome Designation

from Ref. 13

M-2

M-3

M-4

Number of

Stiffeners

26

26

38

Shell and

Stiffener Geometry in

Inches

a t b c d
s

20 .O349 0 .0191 .3O .41

2O .O349 .25 .O191 .3O .41

20 .0272 0 .0239 .30 .41

O
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Table 6

Buckling Loads for Meridionally Stiffened Spherical Domes

Buckling Loads P = P/Pcr*

Dome

Designation

M-2

M-3

M-4

Wave

Number n

7
8

9
lO

7
8

9
lO

7
8

9
lO

ll

12

Experimental

Pexp

1.19

i .63

1.59

Nonlinear Nonlinear Linear

Theory Theory Theory
Internal External Internal

Stiffening Stiffening Stiffening

P2 P3

1.31
1.26
1.24

1.25

i .46

1,70
1.68

1.7O

2.28

1.86

i .63

1.57

1.54

1.54

i .56

2.21

i. 38

1.31

i. 28

I. 27

1.67

1.58

1.54

1-53

1.70

1.57
1.50

1.45
1.44

1.44

*Pcr = 2E(ts/a)2/[3(1 - v2) _/2
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